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THE DOUBLE ELECTRICAL LAYER AT THE SURFACE OF A
SATELLITE

M. A. Gintsburg

As 1s known, a satellite acquires a certain charge in the iono-
sphere, and accordingly a double electrical layer is formed at 1ts
surface [1, 2] (Fig. 1). Knowledge of the structure and propertieé
of the double electrical layer 1s very essentlal: the interaction
between the satelllite and the lonosphere occurs "through" the double
layer; the double layer determines the boundary conditions, and also
affects the physical agents of the more complicated processes of iono-
spheric disturbance, the electron and ion beams formed by the satellite,
Three equations describing the distribution of the electrical fleld
in the double layer have been given in the literature. These equations
differ, however, and lead to differing dependences of the potential
upon the distance from the wall. It 1s advantageous, therefore, to
indicate briefly the differences between these three theories and
what they give when applied to a concrete problem of a satellite in

the ionosphere. This i1s the purpose of the present review [January,

19591.
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i. The Double ILayer in Thermo-
dynamic Equilibrium (3]

x I

-% i* . The original position of the

:%:_+T i . classical theory of the double layer

:g"* + . used in electrochemistry and colloid

:%E‘* . chemistry is that charged particules

-g;* T (1ons) are in the double layer in a
0 * state of thermodynamic equilibrium,

Fig. 1. and therefore, are described by the

Maxwell-Boltzmann distribution funce
tion

o e . .
Flu, x)=¢Co =7 K7 Q )

where u 1s velocity, x a coordinate, ¢ = o(x) the potential, & the
charge of a particle, m its mass, and T temperature. For clarity,
let us examine only the one-~-dimensional case (a plane double layer,
Fig. 1) when the problem i1s solved in quadratures. The other cases
(spherical, cylindrical layer) are solved by numerical integration of
the correspondingz equations, but the physical picture remains the
same as for a plane double layer. If the thickness of the double
layer d 1s much less than the linear dimensions of the surface of
the satellite L, (d << L, for large satellites with L, ~ 1 m), then
the double layer can be assumed plane in the first approximation.
Therefore, the plane double layer is an important limiting case, by
which it is convenient to explain the physical picture,
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The kinetic equation

EREE S X AN
. + e Ty — . (2)

has, as 18 easily verified by substitution, a standard solution

Fex(y o), (3)
where x is an arbitrary function of 1its argument E%i +.e¢. Obviously,
the form of the functlon x 1s determined by the boundary conditions.

In our case there are two such conditions: x = 0O and x = », At x =0,
as in all space, x must be a symmetric function of veloclity (i.e.,

at any u, x(u) = x (-u)); the wall is reflecting. At infinity (¢ = 0),
the function x must convert to Maxwell distribution (1). By choosing
X 1n the form of (1), we satisfy both boundary conditl ons and obtain,
there, a unique solution of the problem of a double layer in equilib-
rium near a reflecting wall.

The theorem that electrons and lons in the double layer near a
reflecting wall are described by distribution (1) follows from the
general principles of statistical physics. This theorem 1s examined
in a work by Mott-Smith and Langmuir [4]. It i1s valid for any sign
of the satellite potential Por for a decelerating as well as for an
accelerating fleld.

By knowing the distribution function (e.g., (1)) for lons and
electrons, it 1s easy to calculate the fleld in the double layer. The

Poisson equation in this one-dimensional case takes the simple form

d?s 2 —iy
—_— e ey el Dy
e il VIS \L Iy .. ol ) , ("’)

where g 1s the absolute value of the electron charge, n, the electron
and ion concentration at infinity (in an undisturbed 1lonosphere),
and Te =Ty 1s the electron and ion temperature,

Introducing the new varlables
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~L_ 48 the Debye radius) (5)
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let us transform (4) to

y" = sinh y (6)
(the double prime denotes differentiation with respect to £). Let
us multiply both sides of (6) by 2y':

2y'y" = 2 sinh yy'.
The derivative of (y')2 is on the left, the derivative of 2 cosh y on
the right, 1.e., (y')2 = 2 cosh y + C;.
When € - w, y = 0, so that

Cp = =2

and

y' = ~2 sinn & (7)
Let us integrate again:

AL

g S—f17‘+lnCL 2 G, 8
) <= | — ¥/
“ stan (8)

When € = 0, y = swc/kT (9, 1s the potential of the satellite). Let
us denote this boundary value by z(z = ep /kT). Then

|- p 2
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and finally
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The double layer can be divided into two regions. In the first
region near the wall |y| = e|o|/kT > 1, 1.e., the potential of an
electron or ion in the fleld of the layer 1s greater than the energy
of its thermal motion. In thls region a space charge 1s created by
ions, and the electron concentration 1s exponentially small
(ng ~ noe'|y|). Equation (%) takes the form: y" = ¥, 1.e., it 1s

essentially nonlinear.
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In the second region, at |y| < 1, the potential energy can
be considered a small addition to the energy of thermal motlon.
Correspondingly, Eq. (%) becomes linear: y" = y (when |y| << 1,
sinh y » y). A space charge p = n, = ng 1s created by ions and

electrons (the concentration of both is small):

A'l(- -, 1(‘. -, I

R
1, n,

The potential drops 1in this reglon according to the law ¢ = ¢oe'g.

The difference between the linear and nonlinear regions o the
double layer 1s shown in Fig. 2, but not to scale.

The dependences of the potential ¢, field strength E, and spacc
charge p upon the distance to the wall x which follow from Eq. (%)
and 1ts solution (9) are shown in Figs. 3 to 9 (smooth curves) for
various values of the potential of the satellite @, = -0.77 v (Figs.
3 to 5), 9, = =6 v (Pigs. 6 to 8), and 9=~ 30 v (Fig. 9). The
potential and fileld dfop vary rapldly: at a distance x = Rp even at
low satellite potentials (¢, = -0.77 v, z = -5.15) the potential
decreases to 8% Per the fleld to 7% of its value at the wall, and the
ion concentration to 0.5% of 1ts value at the wall. At 9, = -6 v,
this decrease goes even more rapldly. Thus according to this theory,
we can use the Debye radius Rp as the thickness of the double layer d.
Let us estimate its maximum value for altitudes of 300 to 400 km.
According to the literature [5], at night n =~ 105/cm®, kT ~ 0,15 ev,
then Rp = 1 cm (maximum thickness of the double layer).

For a double layer at equlibrium,(4) through (7), the fileld
strength at the wall lncreases exponentially with an increase (modulo)
in the satellite potentlal ¢, reaching 47 xv/cm at P, = =3V (z =
= «-20), It 1s namely thils singularity, together with the dependence
upon @, of the capacitance of the double layer (see Section 3), which
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could serve for comparison of theory with experiment, and for selection
of a correct model of the double layer by independent measurement of

E and 9.- In this it should be borne in mind that, due to unevenness
of the surface of the satellite, E is measured not at x = 0, but at
some distance from the wall on the order of 0.01 to 0,02 mm, so that
the experimental value of E(x = 0) 1s close to the average value of

E at x = 0.001 to 0.002 em. At z = -20, x = 0.002 cm, Rp = 0.2 cm,

by formula (7) we find E = 300 v/cm, which is considerably less than

47 xv/cm.

\ Nonlinear Region Linear Region

2. _The Langmuir-Bohm Equation [6, 7]

As before, the electron distribution is assumed to be a Boltzmann
distribution, 1.e.,
Ne == nye e/kT,
Under our conditions, when 9, < 0 and z » 1, almost all electrons are
reflected, and this assumption is valid.
However, the ion Aistribution takes another (non-Boltzmann) form,
Ignoring the thermal energy of the ions, Langmuir and Bohm took

'—"2—“:+ ¢p = const = 0, (10)



From the candition of constancy of conduction current

div J =0
we find the relationship between the concentration of ions and their
velocity at a given point:

S SNE

90
®

(11)

Il=n°

i.e., approaching a negatively charged wall, the concentration of
positive ions does not increase, as in a double layer in equilibrium,
but, conversely, drops. Thls reasoning is also applicable for an
absorbing wall. Substituting (11) into the Poisson equation

§§==~4ﬂdnr—no. we find the Langmuir-Bohm equation of the double

layer
d"'?____‘ - . /’_9—2_ e_('.;--?,.)
Pl 4»2'10[ ’/ ? e I’ (12)
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Now a fundamental difficulty arises: we cannot find strict
boundary conditions for thils equation. If 1t 1s assumed that at
infinity n = n,, as in Section 1, then, because 9 O as x— e, ions
in the double layer will have infinite velocity, and their concentration
will be zero. Assligning a certaln condition u = u, when ¢ = ?s at
a finite distance fram the wall, we, 1n essence, introduce the same
value which we excluded by relation (10), 1.e., thermal motion. To
be consistent, we cannot let u = u, at x = > when taking thermal
motion into account, Instead of u = u,, we must introduce the distri-
bution funetion f(u, x), and also take the velocity spread into account,
Langmulir and Bohm set the boundary condition approximately: they
took the fleld strength E = -d¢/dx = O at the boundary of the double
layer at ¢ = @ ~ KL (Strictly speaking, E = O when ¢ = 0, 1.e.,

e
at infinity.)



Multiplying (12) by do/dx, let us integrate and use the approximate
boundary condition
when  x:=x, ¢ ==, 4—3 =0. (13)

We obtaln the followirg equation for o:

H{p—¢.)

8=+ sl (/5 1) 1 (29

This equation cannot be integrated in quadratures. It is integrated
numerically [7], where it 1s taken that Py ~ kT/e (the double layer
ends where the energy of thermal motion 1s of the same order as the
potential energy in the field of the double layer).

Qualitatively, the nature of the sélutions of Eq. (14) can be
explained as folows, This equation 1s more accurate, the lower x.
But when x << Rp, le(o - cpo) |/kT > 1, and the exponential term in Eq.
(12) 1s negligible in comparison with \/;;7;7—-Then

« —_ 4 _
g:‘l'VT-IIOS‘/I(:S’,i.e.’I(‘gla[‘;_:I?claj‘__Bﬁm’ (15)

l.e., |¢l decreases somewhat more rapidly than according to the linear
law ¢ = ? + ax. If there were a total absence of electrons and ions
at the wall, then the potential would be a linear function of x, and
the fleld strength would be constant. The presence of lons leads
to a decrease in the field in the double layer. But, of course, the
field decreases much more slowly than according to law (9), and,
accordingly, the double layer is much thicker. For example, at
z = -26, ¢ decreases to O.19, at x ~ 100Rp [7], while according to
(9) this same relative drop in potential occurs at x = 0.2Rp (Fig.
3, smooth curve). Such a slow decrease in the field would lead in
the lonosphere to double layers with a thickness of about one meter,
which 1s highly improbable.

An advantage to Eq. (12) 1s that it does not require an ideally
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reflecting wall and thermodynamic equilibrium. However, this equation
does not take thermal motion into account.

All of the above pertains to a wall which 1s fixed relative to
the plasma. Now let us estimate the set-up time of the double layer
Ty and compare 1t with the time lnterval To during which the field
of the satellite 1s at a given point 1n space. The condition for
setting up a double layer is 7,6 >> 7,. Distribution (1) or (11) 1is
set up, roughly speaking, during time Tos the time necessary for an
ion to fly through the double layer. Let us find the upper limit

Ty = Thax® Let us assume that an ion 1s uniformly accelerated; then
T = V2d/a, where a = eE/m is the acceleration. Calculating T

max’
we can take the maximum value of E, 1ts value at the boundary of the
double layer when x = RD. From the curve in Fig. 4 we obtain:
E =1 v/em when x = Ry. Then Tnax = 2:107¢ sec. Let the satellite
be a cylinder with length L, = 1 mm. Then its fleld will be at a
given point during the time T, = %% = 10"4 sec, 1.e., To D> Ty,
and distribution (1) has time to be established.
The flight time Ty can also be calculated accurately, by integrat-
ing the equation of motion of an ion with potential ¢(x). For Ty

we obtain the following expression:

dx
‘ti=\ -
SRR
where X, 1s the boundary of the double layer, and Ve 1 the thermal
3
velocity of an ion.

If the field E is small then the flight time Ty is determined by
the thermal velocity T, = d/v .
i T, 1

-12-



2. _The Double Layer at Equilibrium Ion Concentration

At values of Te which are not too high, the change in ion

concentration due to their acceleration by the field 1s not great:
it 1s proportional to the root of the ratio of the potentials (see
(11)). Wnen ¢, = -0.77 v, the ion concentration at the wall nlxgo =
= 0,5 n,, where n, is the ion concentration at the boundary of the .
layer. At 9, = -3 v, n| o= 0.2 n_.

The nonuniformity of the lon distribution n(x) is taken into
account in Eq. (12); on the other hand, an error is allowed in deter-
mining the boundary conditlons, the effect of which on the result is
rather difficult to evaluate. Let us attempt to proceed backwards:
let us assume that, in general, the lon concentration is constant,
which "compresses" somewhat the double layer in comparison with Eq.
(12). 1In this, however, it 1s possible to satisfy exact boundary
conditions: E = O not when x = Xo and ¢ = ?,s 88 in (12), but when
X—- o, = 0, The approximation n= const 1s especlally suitable for
the nose surface of a satellite: the veloclty of the satellite 1is
greater than the ion thermal velocity and the veloclty created by the
field, dand, therefore, an equilibrium lon distribution does not have
time to be established for the given fleld.

wWhen ny 18 not a functlion of x, the Polsson equation takes the

form

as
ﬁ- == 41:"05 (elw/kr —_ l).

(16)
or, in dimensionless variables y and £, (5)

y'=%(e”—1). (17)
Otherwise, it can be written in the form

2y"y' = y'e¥ - 3!,

~13-



1.en’

y'=Ve—y—c.

When x—= w, y=y' = 0, 1.e., ¢ = 1 and
Y =Va—yg—T, (18)
R (19)

2 Vet—u—1
This integral expresses ¢ as a functlon of x. The curves of o(x),
E(x) and p(x), calculated by formulas (18) and (19), are shown in
Figs. 3, 6 and 10 to 15 (dotted curves).

As was to be expected, the potentlial decreased more slowly than
according to formula (9), the field strength was less, and the thick-
ness of the double layer somewhat greater. For ¢ = -0,77 v, the
potential decreases to 0.1, at x = 5Rj (see Fig. 3). An equation
similar to (16), but for a spherical problem, has been used by Jastrow
and Pearse [2]. We made the following corrections and additions to
their work:

1) We went into the conditions of the applicability of Eq. (16)
in somewhat more detail.

2) We examined the plane problem and obtained an accurate solution
for it (Jastrow and Pearse [2] examined only the spherical
problem, the corresponding equation was solved numer '‘cally
on computers). The double layer can be assumed plane for
d < L,, 1.e., for Sputnik III, Explorer III and other
satellites with linear dimensions of 1 meter and larger (d is
the thickness of the double layer, and L, is the linear
dimension of the satellite).

3) In accordance with experimental data [8], we took a different
electron temperature: kT _ = 0.15 ev, lower by a factor of
10, and constructed graphg of the field distribution in the
double layer which correspond more accurately (kT, = 0.15 ev)
to the experimental characteristics of the 1onospﬁere (the
calculations were made at IZMIRAN by G, M. Sosnovskaya and
Yu. G. Ishchuk, whom the auther thanks).

In conclusion to this section, let us make some remarks concerning

concrete conditions for a satellite,.

-14-



1. The distribution of electrical charges on the surface of a
satellite 18 not, strictly speakling, static. The total ion current
over the entire surface of a satellite is equal to the total electron
current over 1ts entire surface. But the electron currents on
individual sections of the surface are not equal to the ion currents.
For example, theré 1s almost no inleakage of lon current to the tail
section Ss (Fig. 16), there are almost no ions in the tail cone, and
the current to the satellite 1s purely electronic., Conversely, lon
current predominates on the nose surface S;. As a result, current
flows along the satellite from the nose surface to the tall. As

calculation shows, this current is on the order of 1073 a.

Ey/cm
L\ .
201 AN
\ z2=-5)5
6k N R,td,Zm
L \\
N
12r \\
s \\ \
\\\
osr AN
~,
~,
\\
0'4. \\\\
93 T 3 i -
] ol4 028 e 956 o1 084 Q98 02 z.em
. Fi 10.
Fin, &
Hp=~ e
S~ =3005m
09 \\\ n,22:10
qa,_ \\ R=0,2¢cH
N\ nT20i5 ov
e AN v
06} AN
25t AN
Qar N
N
g3t \‘\
a2r s\\\
hal S
0,’ R ~~~~_-_
05— 28

7 R N ; 3 ]
U B iz e & ok awe Ve Zew
Fig. 11,

15~



Ph

10 = o e e s e e e e

48t

(/14

out

Eviem

20440
R, 02cm
S Kkl:015 ov

N WS Ly O v e
/

/

e

<
L~

©
o
s~}

2 39 6 5 6 71 8 9 10 iz iie
Q28 042 Q56 07 08 096 112 (26 14 156 168 182 Z.cm

Fig. 12.

2s-40
\\ R ‘D.ZCJI
N\ #1*Q1S5ev

~

R A T AR A R [ R T &
02 055 o8 112 14 168 196 z.fa zgz f,% I.cm

Fig. 13.

2=~20
Ryr2em
~ KTs]5 ev

i 1% ; ' ? )
we A 4 sk 4 fr g ibfnew



Thus the satellite serves as a place for recambination of elec-
trons and ions. In recombination, energy on the order of the ioniza-
tion energy 1s liberated, It 1s very low, but the effect of the libera-
tion by the satellite of lonsopheric energy holds in principle#*,

Pin,
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Fig. 15

2. Double layers are formed on any obJect (antennas, measuring
instruments, etc.) 1ssuing from the body of the satellite into the
ionsophere., The interaction of two double layers 1 and 2 leads to the
formation of a potential well with a depth of up to several volts
(Fig. 17 shows the potential curve along the line M;Mz; A; and Az
are two antennas). By falling into this well, an electron can accom-
plish osclllatlons in 1t and be accelerated to considerable energy
(on the order of evc.) This can serve as a source of electron
oscillatioms, and its harmful effect should be borne in mind when
putting various measuring instruments lnto the lonosphere.

3. Let us calculate the capacitance of the double layer. The

capacltance of a unit surface of a satellite i1s found by the expression

* Of course, ionospheric energy 1s imparted to the satellite
in another way: 1in collisions of 1lons, electrons and molecules
agalnst the surface of the satellite,

A7



C = o/p,, where the surface density of the charge o = é%'lx - o Let
us calculate y!_ o by formula (7):
oo™ = 2tnbgund By = — 2V 5 5L e, (20)
i.e.,
vz g%y
C=Fr; = (21)
The differential capacitance is also an important characteristic
of the double layer:
Cdir=’%=2,.,_l*§ kl,f”h;"' (22)

As distinct from the capacitance of linear systems, C and Cdif are
functions of P’ the charge 1s not proportional to the potential.
Similarly, from Eq. (18) we find

— kT
Lio=V2 Tﬁ;Ve"—z—l,
=l — 2
¢ nyzzRDVw—-z—-L ( 3)
R N c—1
Car —2:;/.'.’— R,

I

Measurement of the capacitance of the double layer (for example, the
alternating current differential capacitance) would make it possible
to determine the true structure of the double layer. The simultaneous
measurement of the potential Pe and the field strength at the wall
would be a way to check the theory of the double layer.
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4, Under the influence of intensive radiation in outer space,
the surface of a satellite can change its properties of reflection
and neutralization of ions striking it, which, in turn, would change
the value of the potential 9, and the structure of the double layer.

4, The Influence of the Magnetic Field

The geomagnetic field does not affect the Maxwell-Boltzmann
distribution (1). The kinetic equation in the presence of an
external magnetic field H has the form
(24)

If e
o7 Hugrad,f+ (- E+ L(uH) )grad.f =0,

m

As is easlly seen by substitution, distribution (1) also satisfies
this equation. It reduces to zero not only the terms u grad,f +
+ ':T E gradyf, but also the magnetic term [lll'}]g—{;=”o[11y5%—“x oaTZJ .
Therefore, the structure of steady-state double layer (4) is not a
function of H, although, of course, the electron trajectorlies will be
completely different., Conversely, the set-up time of the double layer
is essentlally a function of H: charged particles cannot move freely
across the fleld H, and the presence of diffuslon across the fleld
is due, in Bohm's opinion [7], to a rather complex mechanism, plasma
oscillations (fluctuations), which still has not been explained
definitely (Chapter 2 [71]).

The Larmor radius of a particle Ry = cmuT/eH 1s a characteristic
which determines the influence of the magnetic flield. In our concrete
boundary-value problem it 1s the magnitude of the Larmor radius
relative to the other characteristic parameters of length: the
dimensions of the satellite L, and the thickness of the double. layer d.

For ions, Rg = 3 to 4 m, 1,e., it is of the same order of magni-

tude as the dimensions of large satellites. Therefore, the magnetic

-19-



fleld influences the ion current to the satellite. The fact of the
matter 1s that the approximation of the Langmuir-Mott-Smith probe
theory [4, 9] which 1is usually used [1, 2] for calculating the current
to a satellite and the potential 9, 1s valid only when the dimensions
of the probe (in our case a satellite) are many times smaller than
the path length Ay. When H = 0,Ay ~ 105 em and Xi >> Lc; this condi=-
tion of the applicablility of the probe theory 1s fulfilled. When
H#O, the role of the "lower boundary" of Ay for the path across the
field 1s played by the Larmor radius RH. Inasmuch as RH ~ Lc’ 1t
must be taken into account that the presence of a probe (satellite)
disturbs the plasma, changing the number of particles in the surrounding
space. The magnetic field affects electron motlon to an even greater
degree. For electrons, the Larmor radius Py~ 2 cm, 1.e., the 1lnverse
inequality ry > L, is fulfillled and the geomagnetic field considerably
decreases the electron current to the probe,

The magnetic field also affects the trajectory of particles
reflected from the surface of the satellite, In flight along the
field H, electrons reflected from the nose surface of a satellite
move along the lines of force, forming an electron.beam. The direction
of this motion (along the lines of force of the field H) is created
by the magnetic field. There will be an ion current in front of the
satellite. As wlth the electrons, the ions will move along the lines
of force. The distance at which these beams are still "distinguishable"
in front of the satellite 1s on the order of that of the free path
along the field, A ~ 10° cm,

In flight across the fleld H, the reflected beam flles in front
of the satellite at a considerably shorter distance. It is on the

order of ry (Fig. 16), because an electron moves simultaneously along

-20-



both the Larmor orbit and the fleld, l.e., along the nose surface of
the satellite., The beam will not be as intensive in flight perpendic-
ular to the fleld as it 1s in longitudinal flight. The most inter-
esting effect connected with the magnetic fleld is, perhaps, electri-
cal drift, As 1s known [10, 11], in the presence of a magnetic fileld
H and an electrical fileld E simultaneously, a charged particle acquires,
besides Larmorhprecession, an additional motion in a direction perpen-
dicular to both H and E with velocity

Wp - SIEHI (25)
This motion 1s called electrical drift, The electrical field E in our

case 1s the field of the double layer, the magnetic field H 1s the
geomagnetic field.

Unfortunately, the division of motion into Larmor precession and
uniform drift (25) is valid only in a sufficiently uniform electric
field, where Ty <L d. In our case ry ~ d, therefore, the drift
velocity should be determined not by Eq. (25), but from accurate
equations of motion of an electron mff = -eE - §-[un]. The solution

of these equations has the form
{ = \' 1 dx
% ]/;; (W — eo (x)] -+ [!}o + oy (x — x)J?
where Wo and &o are the total energy and velocity of an electron 1in

the direction of the drift, @(x) the potential of the electric field,
Wy the Larmor frequency, X, the distance of an electron from the wall
at the initial moment. For the other coordinate y we have
Yoo o (v - x,).
In flight along the field (Fig. 18 a &@nd b), drift leads to flow
around the satellite in the plane perpendicular to the flight. Elec-
trons will move relative to the satellite in a spiral. In flight
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perpendicular to the field (Fig. 19), drift flow-around will occur
in the longitudinal plane.

& &
“a#
&

= 3

&

Fig. 18 Fig. 19

A natural question arises: with a negatively cgarged satelllte,
there are very few electrons near its wall (ne ~ n e Figs. 2, T,
12, 15), while at the place where their concentration is close to n,»
the electric field 1is zero, Wb = 0, and 1t would appear that there is
no drift. But this is not the case at all. Even near the boundary
of the double layer, when n, ~ 10°%n_, E ~ 107! v/cm and Wy, according
to formula (25), is on the order of 107 cm/sec (for example, on the
curve for ¢ in Fig. 13, when x = 5Rp = 5 cm, 9, = =3 v, E = 0.15 v/em
and Wp ~ 107 cm/sec). Of course, formula (25) is not, strictly
speaking, valid for Ty~ d, and the drift velocity is really somewhat
less, but here we wish only to indicate the existence of such an effect
(electrical drift in the field of the double layer of a satellite)
and not calculate its value,

For the effect of drift flow-around, satellite motion 1is not at
all compulsory (although, of course, it exerts an influence). Any
body placed in a plasma acquires a surface charge, and drift about
it arises from the influence of the magnetic field. The essential
singularity of a satellite 1s a different matter: its dimensions are.

much less than the path length,.and drift (in the ionosphere) is not
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camplicated by collisions (in any case, in the first approximation).
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